
3.4.4

Using the Lagrange multipliers method and setting g(x, y) = x2−y2, we have
to find points (x, y, z) that satisfy both

g(x, y) = 2

∇f(x, y) = λ∇g(x, y)

This means
x2 − y2 = 2

1 = 2λx

−1 = −2λy

The last two equations give x = y, but then the first one never holds. Thus,
there are no critical points constrained to the given hyperbola.

3.4.6

Using the same method and setting g(x, y, z) = x2−y2 and h(x, y, z) = 2x+z
we have to solve in this case

g(x, y, z) = 1

h(x, y, z) = 1

∇f(x, y, z) = α∇g(x, y, z) + β∇h(x, y, z)

Which means
x2 − y2 = 1

2x+ z = 1

1 = 2xα + 2β

1 = −2yα

1 = β

After substituting β by 1 we get that the 3rd equation becomes −1 = 2xα,
which in combination with the 4th equation gives x = y, which never satisfies
the 1st equation. Hence f has no local extrema in this restriction.
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3.4.20

If the dimensions of the box are x, y and z meters, then the surface S and
the volume V are given by

S(x, y, z) = xy + 2yz + 2xz

V (x, y, z) = xyz

Since x ≥ 0, y ≥ 0 and z ≥ 0, the possible values of x, y, z form a com-
pact surface and thus V has a global maximum and minimum. Since in the
boundary all the values for V are 0, we just have to check the critical points.

The equations become
S(x, y, z) = 16

∇V (x, y, z) = λ∇S(x, y, z)

Which means
xy + 2yz + 2xz = 16

yz = λ(y + 2z)

xz = λ(x+ 2z)

xy = λ(2x+ 2y)

Dividing the second by the third equation we have

y

x
=
y + 2z

x+ 2z
⇐⇒ xy + 2yz = xy + 2xz ⇐⇒ x = y

Where the last equation holds since z 6= 0 because we are looking for interior
points.

Now substituting y = x in the last equation we have λ = x/4, and then
looking at the third equation we have

xz =
x(x+ 2z)

4
⇐⇒ z =

x+ 2z

4
⇐⇒ z = x/2
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Substituting this in the original equation we have

3x2 = 16⇒ x =
4
√

3

3

Which gives the point p =

(
4
√

3

3
,
4
√

3

3
,
4
√

3

6

)
, and thus V (p) =

32
√

3

9

3.4.31

a) By definition, the gradient ∇f(x) must satisfy

lim
h→0

f(x+ h)− f(x)−∇f(x) · h
‖h‖

= 0

Now using that (Ax) · x = xTAx we have:

lim
h→0

(x+ h)TA(x+ h)− xTAx− 2∇f(x) · h
‖h‖

= 0

Putting (x+ h)TA(x+ h) = xTAx+ hTAh+ 2hTAx we have

lim
h→0

hTAh+ 2hTAx− 2∇f(x) · h
‖h‖

= 0

We can see hTAh/‖h‖ as (h/‖h‖)TAh, and hence this term already goes to
0, since Ah approaches 0 as well. Therefore, the gradient must satisfy

lim
h→0

2hTAx− 2∇f(x) · h
‖h‖

= 0

Which gives ∇f(x) = (Ax)T . (Remember that the gradient is a row vector)

Note that this solves the general case, but since the matrix is 3 × 3 the
gradient could be computed by hand.

b) Since a sphere has no 1-dimensional boundary, its maximum and minimum
must be attained at critical points restricted to the sphere. Hence altogether
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with the restriction g(x) = 1, where g(x) = x · x = ‖x‖2, it must hold the
Lagrange multiplier equation:

∇f(x) = λ∇g(x)

Which means (Ax)T = λ(2x)T as desired. Note that having a 2 at the right
side doesn’t affect the existence of λ.

c) Since we are now in a compact 3-dimensional surface, the candidates for
maximum and minimum are the interior points in which ∇f(x) = 0 or the
points in the sphere in which Ax = λx (by part (b)).

∇f(x) = 0 means Ax = 0 and therefore f(x) = 0. However, Ax = λx means
f(x) = (λ/2)x · x = λ/2, since x is in the unit sphere. This gives that the
candidates are 0 along with the eigenvalues of A divided by 2, and thus the
minimum of f in the unit ball is the minimum of these numbers, and the
maximum of f is the maximum of these numbers.

3.4.38

We have to find the maximum of f(x, y) = xy−x−y+1 under the restriction
g(x, y) ≤ B, where g(x, y) = xp+ yq.

If we check at the interior points of the region g(x, y) ≤ B, x ≥ 1 and y ≥ 1,
the only candidate is the point (1, 1), when the gradient vanishes, but this
gives f(1, 1) = 0, and the same happens for points in the boundary x = 1 or
y = 1 [note that f(x, y) = (x− 1)(y − 1)].

Then, the candidates are given by the solutions of ∇f(x, y) = λg(x, y) and
the restriction g with equality, which means

y − 1 = λp

x− 1 = λq

xp+ yq = B

Substituting in the third equation x = 1 + λq and y = 1 + λp we get

p+ q + 2λpq = B ⇒ λ =
B − p− q

2pq
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And plugging back in the first two equations we get

x =
B + p− q

2p

y =
B + q − p

2q

The quotient of these gives the ratio.

3.5.4

Treating x as a constant we get the solutions of the quadratic equation

y =
2±

√
4− 4x(x2 + 2)

2x

(a) All the points in which the discriminant 4− 4x(x2 + 2) is positive, there
is a neighborhood in which it remains positive, and hence we can solve for y
in a neighborhood. The only point in which this doesn’t happen is when the
discriminant is 0, where we can solve for y but not in a neighborhood, those
points satisfy

y =
2

2x
⇐⇒ xy = 1

(b) Applying the implicit function theorem, we know that we can isolate y

around a neighborhood at points satisfying
∂F (x, y)

∂y
6= 0, which means

2yx− 2 6= 0⇐⇒ xy 6= 1

Finally, we can compute the value of dy/dx using the identity

dy

dx
=
−Fx

Fy

=
−y2 − 2x

2xy − 2

3.5.7

If F (x, y, z) = x3z2 − z3yx, then

∂F

∂z
(1, 1, 1) = −1
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But
∂F

∂z
(0, 0, 0) = 0

This shows that we can solve for z near (1, 1, 1) but not around (0, 0, 0).

Again we have
dz

dx
=
−Fx

Fz

(1, 1, 1) = 2

And
dz

dx
=
−Fx

Fz

(1, 1, 1) = −1

3.5.10

Using the Inverse Function Theorem, we know that F (x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z))
can be solved around a point (x, y, z) iff |Df(x, y, z)| 6= 0.

We have

|Df(0, 0, 0)| =

∣∣∣∣∣∣
1 0 0
0 1 0
2 0 1

∣∣∣∣∣∣ = 1

Which means that it can be solved around (0, 0, 0).

3.5.14

Given g(x, y, z) = x2 + y2 + z2, we have that

∂g

∂x
(1, 0, 0) = 2

∂g

∂y
(1, 0, 0) = 0

∂g

∂z
(1, 0, 0) = 0

This means that at (1, 0, 0) we can just solve the equation for x. The same ap-
plies for (−1, 0, 0). An analogous reasoning is used for the other intersection
points between the sphere and the axis.
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