3.4.4

Using the Lagrange multipliers method and setting g(z,y) = x* —?, we have
to find points (z,y, z) that satisfy both

g(r,y) =2

Vf(x,y) = AVg(z,y)

This means

2 — =9
1=2X\x
—1=-2\y

The last two equations give x = y, but then the first one never holds. Thus,
there are no critical points constrained to the given hyperbola.

3.4.6

Using the same method and setting g(x,y, z) = 2*—y* and h(x,y, z) = 22+2
we have to solve in this case
g(w,y,2) =1
hz,y,z) =1
Vf(r,y,z) =aVg(z,y,z) + BVh(r,y,2)

Which means
2’ -yt =1

2r4+2=1
1 =2zxa+ 28
1 = -2y«
1=p
After substituting # by 1 we get that the 3rd equation becomes —1 = 2za,

which in combination with the 4th equation gives x = y, which never satisfies
the 1st equation. Hence f has no local extrema in this restriction.
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3.4.20

If the dimensions of the box are z, y and z meters, then the surface S and
the volume V' are given by

S(z,y,2) = xy + 2yz + 222

Vi(z,y,2) =zyz

Since x > 0, y > 0 and z > 0, the possible values of z,y, 2 form a com-
pact surface and thus V' has a global maximum and minimum. Since in the
boundary all the values for V' are 0, we just have to check the critical points.

The equations become
S(z,y,2) =16

VV(z,y,2) = AVS(z,y, 2)

Which means
xy + 2yz + 2xz = 16

yz = My + 22)
rz = ANz + 22)
xy = A2z + 2y)

Dividing the second by the third equation we have

2
y_u+ Z<:>xy+2yz:xy+2a:z<:>x:y
r T+ 2z

Where the last equation holds since z # 0 because we are looking for interior
points.

Now substituting y = z in the last equation we have A = x/4, and then
looking at the third equation we have

x(z + 22) x+ 2z
Z:T<:>Z: 1

= z=1x/2



Substituting this in the original equation we have

43
3

322 =16 =«

43 43 43
3737 6

2
), and thus V(p) = %ﬁ

Which gives the point p = (

3.4.31

a) By definition, the gradient V f(x) must satisfy

o T h) = (@) = V(@) b
h—0 | Al

=0

Now using that (Ax) - x = 2T Az we have:

lim (x+h)TA(x + h) — 2T Az — 2V f(x) - h

=0
h—0 | Al

Putting (x + h)T A(z + h) = 2T Az + W' Ah + 2h" Az we have

. hTAh+2hT Az — 2V f(z) - h
lim

Jim T2l =0

We can see hT Ah/||h| as (h/||h]|)T Ah, and hence this term already goes to
0, since Ah approaches 0 as well. Therefore, the gradient must satisfy

. 2hTAz -2V f(z)-h
lim

=0
h—0 | Al

Which gives Vf(z) = (Az)T. (Remember that the gradient is a row vector)

Note that this solves the general case, but since the matrix is 3 x 3 the
gradient could be computed by hand.

b) Since a sphere has no 1-dimensional boundary, its maximum and minimum
must be attained at critical points restricted to the sphere. Hence altogether
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with the restriction g(z) = 1, where g(z) = x - x = ||=||?, it must hold the
Lagrange multiplier equation:

Vf(z) = AVy(z)

Which means (Az)" = A(22)7 as desired. Note that having a 2 at the right
side doesn’t affect the existence of \.

c¢) Since we are now in a compact 3-dimensional surface, the candidates for
maximum and minimum are the interior points in which Vf(z) = 0 or the
points in the sphere in which Az = Az (by part (b)).

V f(z) = 0 means Az = 0 and therefore f(z) = 0. However, Ax = A\x means
f(z) = (A\/2)x - x = \/2, since x is in the unit sphere. This gives that the
candidates are 0 along with the eigenvalues of A divided by 2, and thus the
minimum of f in the unit ball is the minimum of these numbers, and the
maximum of f is the maximum of these numbers.

3.4.38

We have to find the maximum of f(x,y) = xy—x—y+1 under the restriction
9(z,y) < B, where g(z,y) = zp + yq.

If we check at the interior points of the region g(z,y) < B,z > 1 and y > 1,
the only candidate is the point (1,1), when the gradient vanishes, but this
gives f(1,1) = 0, and the same happens for points in the boundary z = 1 or

y =1 [note that f(z,y) = (z — 1)(y — 1)].

Then, the candidates are given by the solutions of V f(x,y) = Ag(x,y) and
the restriction g with equality, which means

y—1=2Ap
r—1=M\q
rp+yq=DB

Substituting in the third equation z =14 Aq and y = 1 + A\p we get

B—p—q

pP+q+2\pg=B= )=
2pq



And plugging back in the first two equations we get

x_B+p—q
_—2p
_B+q-p
y——2q

The quotient of these gives the ratio.
3.5.4

Treating = as a constant we get the solutions of the quadratic equation

24 /4 —da(a® +2)
N 2x

(a) All the points in which the discriminant 4 — 4x(x? 4 2) is positive, there
is a neighborhood in which it remains positive, and hence we can solve for y
in a neighborhood. The only point in which this doesn’t happen is when the
discriminant is 0, where we can solve for y but not in a neighborhood, those

points satisfy

2
y=—<=uay=1
2z

(b) Applying the implicit function theorem, we know that we can isolate y

OF (z,y)
0

around a neighborhood at points satisfying # 0, which means

2ur —2#0 <= zy # 1

Finally, we can compute the value of dy/dz using the identity

dy_—Fz_—y2—2x
de F, o 2ay —2

3.5.7

If Fx,y,2) = 2%2% — 23yx, then

OF
E(la 17 1) =-1



But OF
E(O, 0,0)=0

This shows that we can solve for z near (1,1, 1) but not around (0,0, 0).

Again we have

dz F,

— = 1,1.1) =

dx FZ(”)
And q P

z L

—=—(1,1,1) = -1

dx Fz(”>
3.5.10

Using the Inverse Function Theorem, we know that F'(z,y, z) = (u(x,y, 2),v(z,y, 2), w(z,y, 2))
can be solved around a point (z,y, z) iff |Df(z,y, z)| # 0.

We have

1
|Df(0,0,0)| = |0
2

S = O
— O O
I
—_

Which means that it can be solved around (0,0, 0).
3.5.14

Given g(x,y,2) = * + y* + 22, we have that

dg

271 =9
ax( ,0,0)

dg

—1 =
8y( ,0,0)=0
dg

_ ]_ =
8Z( ,0,0) =0

This means that at (1,0, 0) we can just solve the equation for x. The same ap-
plies for (—1,0,0). An analogous reasoning is used for the other intersection
points between the sphere and the axis.



